ситуации, затем с их помощью разработать требования безопасности работы на эскалаторах, создать информационную поддержку и автоматизировать процесс принятия решений, разработать критерии оценки качества.

Для математического обеспечения автоматизированного проектирования эскалаторов надо разработать программу, реализующую данный алгоритм на языке высокого уровня (желательно на языке СИ – лингвистическое обеспечение), для технического обеспечения автоматизированного проектирования – разработать соответствующее аппаратное обеспечение.

Библиографический список

1. **Ортогональные** преобразования при обработке цифровых сигналов / Н. Ахмед, К. Р. Рао ; пер. с англ. ; ред. И. Б. Фоменко. – М. : Связь, 1980. – 248 с.

2. **Теория** и практика вейвлет-преобразования / В. И. Воробьев, В. Г. Грибунин. – СПб. : ВУС, 1999. – 203 с.

3. **Ingrid** Daubechies. Ten Lectures on Wavelets ; пер. с англ. – Ижевск : НИЦ «Регулярная и хаотическая динамика», 2001. – 464 с.

4. **A Wavelet** tour of signal processing / S. Mallat ; пер. с англ. – М. : Мир, 2005. – 671 с.

УДК 691-405.8

М. Хаммади

Петербургский государственный университет путей сообщения

ТЕРМОДИНАМИЧЕСКИЙ И ИНСТРУМЕНТАЛЬНЫЙ АНАЛИЗ ПРОЦЕССОВ В ЦЕМЕНТНЫХ ИЗДЕЛИЯХ ПРИ КАПИЛЛЯРНОМ ПОДСОСЕ КРЕМНЕЗОЛЯ

Представлен термодинамический и инструментальный анализ образцов пенобетонных изделий разной плотности с кремнезолем, подпитанных методом капиллярного подсоса. Показано, что при понижении значения энергии Гиббса реакций кремнезоля с составляющими цементного камня возможно самопроизвольное образование дополнительного количества гидросиликатов, в том числе пониженной основности. Инструментальный анализ подтверждает образование дополнительного количества гидросиликатов кальция, что объясняет повышение прочности.

образцы цементные, капиллярный подсос, термодинамика, инструментальный, прочность, энергия Гиббса, гидросиликаты.

Введение

Современное состояние вопросов строительной практики, а также защиты окружающей среды диктует поиск новых энергосберегающих решений. Такие решения предоставляет знание основополагающих естественно-научных законов, которое предполагает использовать известные самопроизвольные процессы вместо затрат энергии, топлива, обусловливающие сохранение чистоты (незагрязнение) окружающей среды с одновременным повышением качества материала, изделия или сооружения.

К числу основополагающих законов относятся прежде всего термодинамические [1]–[3], которые позволяют «использовать» энергию химического процесса, способную превращаться в полезную работу, величину $-\Delta G_{298}^0$, которая характеризует самопроизвольно протекающую химическую реакцию. К числу таких же (с точки зрения самопроизвольности) можно отнести некоторые капиллярные явления (физические процессы), известные тем, что в узких капиллярах жидкость поднимается вверх под действием сил поверхностного натяжения (капиллярный подсос).

В работе [4] показано повышение прочности пенобетонных изделий разной средней плотности при подсосе раствора кремнезоля (свыше 30% для D600). Однако особенности физико-химических превращений, происходящих при подсосе кремнезоля, были неизвестны. В настоящей работе представлены исследования физико-химических превращений, выполненных термодинамическими и инструментальными методами, которые позволили проследить возможные реакции, происходящие при подсосе раствора кремнезоля.

1 Исследования и результаты. Термодинамический анализ

В таблице 1 представлены примеры реакций, в которых рассчитаны превращения по изменению величины энергии Гиббса – ΔG_{298}^0 , для расчета которых использованы термодинамические параметры, представленные в таблице 2 в соответствии с данными изданий [5], [6].

В соответствии со значениями $-\Delta G_{298}^0$, представленными в таблице 1, можно утверждать, что поскольку $-\Delta G_{298}^0$ процессов имеет отрицательное значение, то эти реакции возможны в стандартных условиях; при этом происходит либо взаимодействие кремнезоля (SiO₂·H₂O) с Ca(OH)₂ (реакции 1–4) и

№ п/п	Химическая реакция взаимодействия кремнезоля	ΔG ⁰ ₂₉₈ реакции, кДж
1	$Ca(OH)_2 + 2SiO_2 \cdot H_2O = CaO \cdot 2SiO_2 \cdot 2H_2O + H_2O$	-201,50
2	$2Ca(OH)_2 + SiO_2 \cdot H_2O = 2CaO \cdot SiO_2 \cdot 1,17H_2O + 1,83H_2O$	-594,46
3	$3Ca(OH)_2 + 2SiO_2 \cdot H_2O = 3CaO \cdot 2SiO_2 \cdot 3H_2O + 2H_2O$	-237,20
4	$5Ca(OH)_2 + 6SiO_2 \cdot H_2O = 5CaO \cdot 6SiO_2 \cdot 5,5H_2O + 5,5H_2O$	-728,50
5	$2\text{CaO} \cdot \text{SiO}_2 \cdot 1,17\text{H}_2\text{O} + 2\text{SiO}_2 \cdot \text{H}_2\text{O} = 2\text{CaO} \cdot 3\text{SiO}_2 \times 2,5\text{H}_2\text{O} + 0,67\text{H}_2\text{O}$	-180,30

ТАБЛИЦА 1. Термодинамический анализ возможных реакций кремнезоля в цементном камне

ТАБЛИЦА 2. Использованные термодинамические характеристики взаимодействующих фаз

Фаза	ΔG ⁰ ₂₉₈ , кДж/моль
H_2O_{k}	-237,40
SiO ₂ ·H ₂ O	-1019,10
Ca (OH) ₂	-866,80
$2CaO \cdot SiO_2 \cdot 1,17H_2O$	-2478,32
3CaO·2SiO ₂ ·3H ₂ O	-4401,20
$CaO \cdot 2SiO_2 \cdot 2H_2O$	-2869,10
5CaO·6SiO ₂ ·5,5H ₂ O	-9870,86

Proceedings of Petersburg Transport University

его химическое связывание, либо понижается основность гидросиликатов (реакция 5) за счет конденсационных процессов. Повышению прочности в соответствии с реакциями 1–5 таблицы 1 будет способствовать увеличение количества гидросиликатов кальция. Кроме того, повышение прочности может быть рассмотрено также с точки зрения присутствия в изделиях после капиллярного подсоса собственно новой гидратной фазы в виде кремнезоля, который в условиях повышенного в системе pH, характерного для образцов на цементной основе, переходит в гель, способный со временем к кристаллизации.

Важно отметить, что термодинамический анализ показал принципиальную энергетическую разрешенность процесса.

2 ИК-спектроскопическое исследование

Метод ИК-спектроскопии (рис. 1, ИК-Фурье спектрометр, ФСМ 12, Россия) и таблица 3 показывают присутствие в системе полос силикат-, карбонат- и сульфат-ионов.

Согласно [7], частоты валентных ОНсвязей гидроксогрупп, ОН-молекул воды, H_2O и ионов гидроксония имеют один и тот же интервал значений для валентных колебаний – от 3750 до 2000 см⁻¹, для деформационных колебаний – 1680–1800 см⁻¹, деформационные колебания ОН-групп, расположенных в вершинах кремнекислородных тетраэдров, всегда имеют частоту 1470– 1400 см⁻¹ [7].

Рис. 1. ИК-спектроскопия образцов пенобетона: *1* – контрольный D400; *2* – D400 с кремнезолем; *3* – контрольный D500; *4* – D500 с кремнезолем; *5* – контрольный D600; *6* – D600 с кремнезолем

ТАБЛИЦА 3. Положение характеристических полос некоторых ионов [7]

Класс минералов, ионная группа	Положение полос v, см ⁻¹			
Силикаты, SiO ₄ -	1100–900	_	830–740	500-400
Сульфаты, SO ₄ ²⁻	_	1250-1000	650–610	450
Карбонаты, CO ₃ ²⁻	1450–1410	880-860	740–680	_

Сравнивая кривые на рисунке 1 по частотам молекул воды и гидроксид-ионов, можно заметить, во-первых, присутствие H_2O и OH⁻ по валентным и деформационным колебаниям, во-вторых, исчезновение полосы ~3600 v⁻ в спектре образца 2 по сравнению с образцом 1, а также уменьшение интенсивности валентных колебаний H_2O на спектре образца 6 по сравнению с образцом 5; предварительный вывод в данном случае может быть о том, что химический процесс при подсосе нанораствора вносит изменения в ИКспектры и зависит от средней плотности образцов, в которых осуществлен этот подсос.

3 Исследование методом дифференциальной сканирующей калориметрии

Образцы цементных изделий из таблицы 1 исследовали методом дифференциальной сканирующей калориметрии (ДСК) с использованием калориметра DSC 60 (Shimadzu) в интервале температур 40–350 °C с шагом 10 °C/мин.

Полученные данные показывают, что для всех образцов характерен широкий пик дегидратации с максимумом при ~100 °С. Соответствующие значения теплоты дегидратации, рассчитанной на основании анализа данного пика по уровню 40–220 °С, приведены в таблице 4.

Следует отметить появление у образца № 6 небольшого дополнительного пика при температурах около 260–290 °С, что можно объяснить наличием более прочно связанной

(координационной, химически сорбированной) воды или какой-либо дополнительной фазы, подвергающейся дегидратации; при данной температуре этот эффект присущ фазе *тоберморит* 11,3А [8], [9].

Анализ показывает также, что в сравнении с контрольным образцы, которые имеют одинаковую тенденцию к изменению и повышению прочности [4], демонстрируют увеличение теплоты дегидратации, возможно, связанное с бо́льшим количеством гидратов (табл. 1), и появление новых гидратов. Таким образом, метод ДСК показал энергетическое отличие образцов, особенно № 6, D600 с кремнезолем, что говорит о большем количестве в этом случае гидратов. Кроме того, появление эффекта в области, близкой к 300 °C, может говорить об образовании низкоосновных гидросиликатов типа тоберморита C₅S₆H₅ (эффект 230-240 °C [9]) или гидрита (C₂S₃H₂ [8], [9]), получаемого по примерной реакции 4 (табл. 1).

Интересно отметить, что низкоосновные силикаты, как известно, формируются в автоклаве; возможность их образования в данном случае может быть связана с избыточной поверхностной энергией кремнезоля, которую в принципе может использовать система для формирования низкоосновных гидросиликатов.

4 Рентгенофазовый и дериватографический анализ

Рентгенофазовый анализ выполнен на рентгеновском дифрактометре ДРОН-3М, с Си-катодом и Ni-фильтром (рис. 2–4).

Номер образца по табл. 1	ΔН, (Дж/г)/%	
1	85/100	
2	105/123	
3	94/100	
4	99/105	
5	85/100	
6	111/130	

ТАБЛИЦА 4. Теплота дегидратации исследуемых образцов изделий

Proceedings of Petersburg Transport University

l – контрольный; *2* – с кремнезолем

Рис. 4. Рентгенограммы образцов D600: *1* – контрольный; 2 – с кремнезолем

Сравнение контрольного образца и образца с кремнезолем (соответственно кривые *l* и 2 на рис. 2, пенобетон D400) показывает, что аналитическая линия $Ca(OH)_2 - oб$ ласть 18° (по 20) в образце с кремнезолемотсутствует, а основная линия в области 34°(по 20) значительно уменьшилась, так жекак линия в области 47°; линия кварца резкоподнялась – область 26° (по 20), т. е. в первом приближении по нахождению основныхлиний Ca(OH)₂ можно полагать, что Ca(OH)₂вступил в химическую реакцию с частьюзоля.

На рисунке 3 представлены рентгенограммы *1* и *2* образцов пенобетона средней плотности D500 – соответственно контрольный и с кремнезолем, которые повторяют вывод рисунка 2 по образцам с плотностью D400; кроме того, наблюдается аморфизация системы; такой же вывод можно сделать из анализа рисунка 4, где также, судя по анализируемым фазам, происходит связывание Ca(OH)₂. Дериватограммы (дериватограф фирмы MOM, Венгрия) показывают в первом приближении идентичность превращений; особенностью дериватограмм с кремнезолем является увеличение количества теряемой воды, о чем свидетельствуют значения по оси ординат для кривой TG – сравнение TG-образцов с кремнезолем и контрольных.

Заключение

Выполнен термодинамический анализ взаимодействия кремнезоля и составляющих гидратных фаз, а также инструментальные исследования в системах с кремнезолем в сравнении с контрольными.

Приведенный фактический материал свидетельствует о том, что в системе с нанокремнезолем происходят количественные (увеличение связанной воды) и качественные изменения, о которых свидетельствуют рентгенограммы, ИК-спектры, а также ДСК-исследование. При этом может быть прослежено образование низкоосновных силикатов.

Библиографический список

1. **Повышение** качества неавтоклавного пенобетона добавками наноразмера / Л. Б. Сватовская, А. М. Сычева, Н. Н. Елисеева // Научный интернет-журнал: Нанотехнологии в строительстве. – 2011. – № 1. – С. 50. – www.nanobuild.ru.

2. Нанодобавки из кремне- и железо(III)содержащего золя для тяжелого бетона на рядовых цементах / Л. Б. Сватовская, В. Я. Соловьева, И. В. Степанова, Д. С. Старчуков // Научный интернет-журнал: Нанотехнологии в строительстве. 2010 – № 5. – С. 54. – www.nanobuild.ru.

3. Некоторые информационные признаки для классификации частиц наноразмера / Л. Б. Сва-

4. Использование метода капиллярного подсоса нанорастворов для развития геоэкозащитных строительных технологий транспорта / Л. Б. Сватовская, А. М. Сычева, М. Хаммади, Т. И. Бойкова // Известия ПГУПС. – 2013. – № 1. – 280 с.

5. **Термодинамические** свойства веществ: справочник / В. А. Рябин, М. А. Остроумов // М. : Химия, 1977. – 371 с.

6. **Термодинамика** силикатов / В. И. Бабушкин // М. : Стройиздат, 1972. – 175 с.

7. **Инфракрасные** спектры минералов / И. И. Плюснина // М. : Изд-во Московского университета, 1977. – 350 с.

8. Петрография цементов и бетонов /
3. М. Ларионова // М. : Стройиздат, 1974.

9. Методы физико-химического анализа вяжущих веществ / В. С. Горшков, В. В. Тимашев, В. Г. Савельев // М. : Высшая школа, 1981. – 287 с.