бы к необходимости участить сетку минимум в пять раз, что сделает процедуру расчета непозволительно долгой. Поэтому сильно локализованные возмущения следует моделировать на основе отдельной краевой задачи для подобласти, заимствуя граничные условия из глобальной задачи.

Библиографический список

1. Возможный подход к проблеме возбуждения электрических полей и токов, обусловленных *B_y*-компонентой ММП / В. М. Уваров // Геомагнетизм и аэрономия. – 1981. – № 1. Т. 21. – С. 114–120.

2. Электрические поля в ионосфере Земли. Численные модели / В. М. Уваров, Б. А. Самокиш. – Санкт-Петербург : Петербургский гос. ун-т путей сообщения, 2009. – 63 с.

3. **Модифицированная** численная модель глобального распределения электрического потенциала. UT-эффект обращения ионосферной конвекции / А. Б. Кондаков, Б. А. Самокиш, В. М. Уваров // Геомагнетизм и аэрономия. – 1999. – № 6. Т. 39. – С. 50–55.

УДК 609.6(075.8)

С. Г. Подклетнов

Петербургский государственный университет путей сообщения

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ С ПОМОЩЬЮ ЯЗЫКА AUTOLISP

Показана возможность применения языка AutoLISP для создания параметрических чертежей в AutoCAD. Рассмотрены основные понятия и области применения широко известного языка программирования AutoLISP, используемого в инженерных расчетах, позволяющего разрабатывать макропрограммы и функции, хорошо сочетающего с прикладной графикой AutoCAD. Приведен текст программы для создания блока построения чертежа параметрической детали. Сделан вывод о возможности применения данного языка для создания параметрических чертежей уже более сложных моделей.

автоматизированное проектирование, язык AutoLISP, параметрические чертежи.

Введение

Особого внимания среди *CAD*-систем заслуживает программный комплекс *AutoCAD*. Эта система автоматизированного проектирования не только предоставляет пользователю удобный графический интерфейс и обеспечивает получение высококачественной графики, но и располагает широким набором инструментов программирования.

К средствам программирования AutoCAD относятся следующие языки: AutoLISP, Visual C++, Visual Basic for Application (VBA, ARX, DCL) [1, 2, 3, 4]. Будучи частью AutoCAD,

AutoLISP позволяет оперировать переменными различных типов и передавать их значения командам AutoCAD при вводе данных. При ответах на запросы команд AutoCAD существует возможность использования выражений AutoLISP, в которых могут выполняться различные арифметические и условные операции с числовыми значениями и значениями определенных переменных.

Возможности, которые обеспечивает *Auto-LISP*:

– использование переменных и выражений при ответах на запросы команд *AutoCAD*;

 – чтение и создание внешних файлов (таким образом осуществляется обмен информацией с внешними программами, которые можно запускать из *AutoCAD*);

 – создание различных функций и новых команд *AutoCAD*, что обеспечивает настройку и расширение графических возможностей системы;

 программный доступ (чтение и редактирование) к данным, которые относятся к объектам проектирования, а также к таблицам *AutoCAD*, содержащим информацию о блоках, слоях, видах, стилях и типах линий;

 программное управление графическим экраном *AutoCAD*, а также вводом/выводом из различных устройств;

- параметрическое моделирование.

1 Параметрическое проектирование

Сущность параметрического проектирования состоит в создании математической модели класса конструктивно однородных изделий, а затем в генерации изображений этих изделий по набору задаваемых размерных параметров. При параметрическом проектировании конструктор запускает программу, рассчитанную на определенный класс изделий, и вводит требуемые размеры. Программа зарисовывает на экране чертеж детали. Конструктор оценивает его и при необходимости вводит размеры снова, до достижения требуемого результата. Особо следует отметить два типа функций, обеспечивающих создание параметрических моделей:

– функции ввода данных и указания объектов;

- функции, работающие со списками.

Функции ввода данных и указания объектов дают возможность пользователю вводить данные в интерактивном режиме. Основные функции:

Функция INITGET:

(initget [<флаг>] [<строка]) – задание ключевых слов и ограничений ввода для функций getpoint, getreal и др.

Функция GETPOINT:

(getpoint [<точка1>] [<запрос]) – ввод точки с помощью клавиатуры или мыши. Функция GETREAL:

(getreal [<запрос>]).

Функции, работающие со списками.

Функция LIST – это основная функция, работающая со списками:

(list [<элемент 1> [<элемент 2> ... [<элементN>] ...]]))

Функция NTH применяется для извлечения из списка элемента по порядковому номеру (нумерация элементов списка осуществляется слева направо и начинается с нуля):

(nth <номер><список>)

2 Использование AutoLISP для создания параметрических чертежей в AutoCAD

Напишем программу параметрического моделирования детали, изображенной на рис. 1.

Для начала нарисуем параметрический эскиз детали. Указываются:

– размеры детали, которые являются входными параметрами к программе (*nD*1, *nD*2, *nD*3, *H*1, *H*2);

- базовая точка;

 точки, которые будут рассчитываться при программировании (*p*1, *p*2, *p*3, *p*4, *p*5, *p*6, *p*7, *p*8).

Эскиз должен использоваться на этапе программирования как пособие для верного понимания детали и как руководство к расчету точек, необходимых для отображения детали (рис. 2).

Программа может быть создана с помощью любого редактора (например, Блокнота), но предпочтительно использовать специально разработанный для этой цели встроенный в *AutoCAD* редактор *VisualLISP* (рис. 3).

3 Создание программы на AutoLISP

Программа включает три блока (функции пользователя):

 – блок создания слоев (выполняется вначале);

– блок ввода данных;

 – блок построения чертежа параметрической детали.

Рис. 1. Задание для создания параметрической модели

Рис. 2. Эскиз

Блок создания слоев *param*: (defun c: param)

(command "_layer" "_m" "Baseline" "_ LW" "0.5" "" "_c" "_white" """) (command " layer" " m" "Lines" " LW"

(command "_layer" "_m" "Lines" "_LW" "0.5" "" "_c" "_blue" "" "_LT" "Осевая" "" ") (command "_layer" "_m" "Hatch" "_LW"

"0.2" "" "_c" "_blue" "" "")

Здесь используется команда AutoCAD layer (слой) с параметрами M (name – наименование слоя), LW (line width – ширина линии), LT (line type – тип линии), C (color – цвет).

Этот блок запускается первым, поэтому перед названием функции стоит префикс *c*:.

Создаются три слоя *Baseline* (базовая линия), *Lines* (основные линии) и *Hatch* (штриховка). Слои различаются цветом (белый, синий), толщиной линии (0.2, 0.5) и типом линии (непрерывная, штрихпунктирная).

В конце блока – вызов блока ввода данных *Try_param*.

Блок ввода данных *Try param*:

(defun Try_param (/ P1 D1 D2 D3 H1 H2)

(command "_layer" "_s" "Lines" "")

;Параметрическое моделирование – точки вводятся пользователем во время работы программы с помощью функций ввода данных и указания объектов

Рис. 3. Программа из AutoLISP

(command "_layer" "_s" "Hatch" "")

;(command " bhatch" " p" " ansi31" "0.5" "0" p9 p10 "")

Редактирование: G:/Статьи_2013_2014/КИБ_статья/param.lsp * (Visual LISP)

(seta

;Ось

<

;Штриховка

>

132

(initget 1)

(setq P1 (Getpoint "Укажите базовую точку детали:")) (initget 6)

(initget 6) (setq D1 (Getreal «\nD1 <100.0>:»)) (if (not D1) (setq D1 100.0)) (setq D2 (Getreal «\nD2 <00.0>:»)) (if (not D2) (setq D2 40.0)) (setq D3 (Getreal «\nD3 <20.0>:»)) (if (not D3) (setq D3 20.0)) (setq H1 (Getreal «\nH1 <20.0>:»)) (if (not H1) (setq H1 20.0)) (setq H2 (Getreal «\nH2 <60.0>:»)) (if (not H2) (setq H2 60.0)) (prompt «Try_param») (DrawDetail P1 D1 D2 D3 H1 H2)

В конце блока – вызов блока построения чертежа параметрической детали *DrawDetail*. Здесь используется команда *AutoCAD*

layer (слой) с параметром *S* (*set* – установить слой).

4 Блок построения чертежа параметрической детали DrawDetail

Блок построения чертежа:

(defun DrawDetail (P1 D1 D2 D3 H1 H2 / p2 p3 p4 p5 p6 p7 x y det)

Обходим деталь по часовой стрелке

Параметрическое моделирование – рассчитываются координаты введенных пользователем точек с использованием функций работы со списками

```
(setq
```

```
x (nth 0 P1)
y (nth 1 P1)
p2 (list (- x (/ D32.0)) y)
p3 (list (- x (/ D12.0)) y)
p4 (list (- x (/ D12.0)) (+ y H1))
p5 (list (- x (/ D22.0)) (+ y H1))
p6 (list (- x (/ D22.0)) (+ y H2))
p7 (list (- x (/ D32.0)) (+ y H2))
p8 (list x (+ y H2))
Отключение привязок
(command «_osnap» «_none»)
Слой Lines – текущий
```

(command " layer" " s" "BaseLine" "") рисование (command « pline» p2 « w» «0» «» p3 p4 p5 p6 p7 « c») Сохранение нарисованного примитива (setq det (entlast)) Зеркальное отображение нарисованной детали (command " mirror" det "" P1 P8 " N") Рисование отрезков (command « pline» p2 (list (+ x (/ D32)) v) «») (command « pline» p7 (list (+ x (/ D32)) $(+ y H2)) \ll)$ установка белого цвета (command « layer» « s» «Lines» «») Ось $(\text{command} \ll \text{line}) (\text{list x y}) (\text{list x (+ y H2)})$ «») Штриховка (command « layer» « s» «Hatch» «») (command « bhatch» « p» « ansi31» (/ (+ D1 H2) 70.0) «0» (list (- x (/ D22.0)) (+ y (/ $H12.0)))(list(+x(/D22.0))(+y(/H12.0)) \leftrightarrow))$ (prompt "DrawDetail")

DrawDetail

Здесь производится расчет координат *x* и *y* базовой точки *P*1 (базовая точка указывается с помощью мыши или вводится с клавиатуры). Рассчитываются координаты точек *p1*, *p2*, *p3*, *p4*, *p5*, *p6*, *p7*, *p8*. Отключаются объектные привязки. Устанавливается текущий слой и рисуется по часовой стрелке контур детали (рис. 1). Нарисованному примитиву присваивается имя *det*. Выполняется зеркальное отображение и рисуются два дополнительных отрезка.

На слое белого (черного) цвета рисуется штрихпунктирная ось. В заключение на слое *Hatch* выполняется штриховка (см. рис. 2).

Используются команды AutoCAD osnap (объектная привязка), layer (слой) с параметром S (set – установить слой), pline (полилиния), line (отрезок), bhatch (штриховка) с параметром P (prototype – тип).

Сохраним файл, состоящий из трех функций, под именем *param.lsp*.

Загрузить этот файл можно одним из способов: меню \rightarrow сервис \land *AutoLISP* \land Прило-

жения (команда *appload*), выводится окно, в котором можно указать файл для загрузки (рис. 4).

При фиксированном расположении загружаемого модуля нужно записать строку для его загрузки в командной строке *AutoCAD*: (load «диск:\\nanka\\param.lsp»). пользованием *AutoLISP* не требуется вводить каких-либо изменений в текст программы. Достаточно лишь запустить программу для выполнения, в процессе диалога указать базовую точку и ввести новые данные. Программа в процессе выполнения сделает все перерасчеты.

Загрузка/выг	узка приложений			?×
Папка: 🛅	КИБ_статья	✓ G	Ø 🖻 🖽 -	() () () () () () () () () () () () () (
tsp param_1 tsp param_2				
itisp param_3				
Имя файла:	param		 Загрузить 	
Тип файлов:	Приложения AutoCAD	(*.arx;*.lsp;*.dvb;*.dt	×	
Загруженные приложения Протокол				
Файл acad mpl	<u>Путь</u> C:\Documents and :	Settings\admin\	Выгрузить	
acad2012.L	C:\program files\aut	odesk\autocad .	Автозагрузка	
acapp.arx	C:\Program Files\Au	itodesk \AutoCA.		
acautoload acdim.arx	e c:\program files\auti c:\program files\auti	odesk\autocad . odesk\autocad . 👽		
<		<u> </u>	Приложения	.]
		Закры	ыть Справка]

Рис. 4. Файл для загрузки

Для запуска программы для выполнения главная функция указывается в круглых скобках (при наличии префикса «*c*:» – без круглых скобок) в командной строке *AutoCAD*.

Если запуск должен быть автоматическим, нужные функции определяются в файле *ACAD.LSP* в функции *s:: startup*.

Заключение

Приведенная программа демонстрирует успешное применение языка для создания параметрической модели простой детали. При параметрическом моделировании с исВ дальнейшем *AutoLISP* может быть рекомендован для создания чертежей значительно более сложных деталей, имеющих много размеров, которые поэтому нежелательно создавать путем обычного моделирования.

Библиографический список

1. **Мир** Лиспа / Э. Хювенен, Й. Сеппянен. – Москва : Мир, 1990.

2. Среда программирования на AutoLISP в графической системе AutoCAD : справочник / А. А. Тучков, А. М. Покровский. – Санкт-Петербург : Звезда, 1992. 3. **Автолисп** – язык графического программирования / Г. А. Бугрименко. – Москва : Машиностроение, 1992. 4. AutoCAD: программирование и адаптация / Ю. А. Кречко. – Москва : Диалог – МИФИ, 1996.

УДК 681.518.5:004.052.32

Вал. В. Сапожников, Вл. В. Сапожников, Д. В. Ефанов

Петербургский государственный университет путей сообщения

СИНТЕЗ КОНТРОЛЕПРИГОДНЫХ ДИСКРЕТНЫХ УСТРОЙСТВ ПУТЕМ ПРИМЕНЕНИЯ МОДУЛЬНЫХ КОДОВ С СУММИРОВАНИЕМ

При проектировании контролепригодных дискретных устройств часто используются коды с суммированием. Классический код с суммированием позволяет синтезировать дискретные устройства с обнаружением любых одиночных ошибок, возникающих в элементах внутренней структуры контролируемого устройства. При этом исходное устройство преобразуется и становится устройством с независимыми или монотонно-независимыми выходами. Показан подход, применение которого уменьшает сложность системы функционального контроля. Это достигается использованием в качестве основы системы контроля модульного кода с суммированием, а не кода Бергера.

функциональный контроль; код Бергера; модульный код с суммированием; информационные разряды; необнаруживаемая ошибка; однонаправленная необнаруживаемая ошибка; комбинационные схемы с монотонно-независимыми выходами.

Введение

При проектировании контролепригодных дискретных устройств [1–5] используют различные способы достижения высокого уровня надежности, при этом несомненно важное значение имеет техническое диагностирование. Под техническим диагностированием понимается процесс определения технического состояния контролируемого объекта с заданной полнотой и глубиной поиска [6].

Процесс диагностирования может осуществляться в двух режимах: тестовом и функциональном. При тестовом диагностировании устройство кратковременно отключается и на его входы подается тест, включающий в себя совокупность проверок [6, 7]. По завершении диагностирования устройство вновь включается в работу. Такой подход, например, требует при построении систем управления 100%-го резервирования. В отличие от тестового диагностирования, при функциональном, или рабочем, контроле определение состояния производится без отключения объекта [2]. В современных микропроцессорных системах управления оба метода диагностирования используются наравне.

Настоящая работа посвящена развитию теории функционального контроля комбинационных логических устройств, являющихся обязательными компонентами любой микропроцессорной и микроэлектронной системы управления.

1 Система функционального контроля

В системе функционального контроля (рис. 1) выделяются три блока: исходное устройство f(x), в функции которого входит вычисление системы булевых функций $f_1(x)$,